Python Scikit-Learn Library
파이썬 사이킷런 라이브러리
- Python 언어로 제공되는 오픈소스 머신러닝 라이브러리이다.
* Scikit-learn Official Documentation (URL)
scikit-learn: machine learning in Python — scikit-learn 1.0.1 documentation
Model selection Comparing, validating and choosing parameters and models. Applications: Improved accuracy via parameter tuning Algorithms: grid search, cross validation, metrics, and more...
scikit-learn.org
Installation (설치) (URL)
# Linux - pip
pip3 install -U scikit-learn
python3 -m pip show scikit-learn # to see which version and where scikit-learn is installed
python3 -m pip freeze # to see all packages installed in the active virtualenv
python3 -c "import sklearn; sklearn.show_versions()"
# Linux - conda
conda create -n sklearn-env -c conda-forge scikit-learn
conda activate sklearn-env
conda list scikit-learn # to see which scikit-learn version is installed
conda list # to see all packages installed in the active conda environment
python -c "import sklearn; sklearn.show_versions()"
# Windows - pip
pip install -U scikit-learn
python -m pip show scikit-learn # to see which version and where scikit-learn is installed
python -m pip freeze # to see all packages installed in the active virtualenv
python -c "import sklearn; sklearn.show_versions()"
# Windows - conda
conda create -n sklearn-env -c conda-forge scikit-learn
conda activate sklearn-env
conda list scikit-learn # to see which scikit-learn version is installed
conda list # to see all packages installed in the active conda environment
python -c "import sklearn; sklearn.show_versions()"
Scikit-learn Classes (Scikit-learn 클래스)
Sciki-learn Class | Description |
sklearn.base | - Base classes and utility functions |
sklearn.calibration | - Probability Calibration |
sklearn.cluster | - Clustering |
sklearn.compose | - Composite Estimators |
sklearn.covariance | - Covariance Estimators |
sklearn.cross_decomposition | - Cross decomposition |
sklearn.datasets | - Datasets |
sklearn.decomposition |
- Matrix Decomposition |
sklearn.discriminant_analysis |
- Discriminant Analysis |
sklearn.dummy |
- Dummy estimators |
sklearn.ensemble | - Ensemble Methods |
sklearn.exceptions | - Exceptions and warnings |
sklearn.experimental | - Experimental |
sklearn.feature_extraction | - Feature Extraction |
sklearn.feature_selection | - Feature Selection |
sklearn.gaussian_process | - Gaussian Processes |
sklearn.impute | - Impute |
sklearn.inspection |
- Inspection |
sklearn.isotonic | - Isotonic regression |
sklearn.kernel_approximation | - Kernel Approximation |
sklearn.kernel_ridge | - Kernel Ridge Regression |
sklearn.linear_model | - Linear Models |
sklearn.manifold | - Manifold Learning |
sklearn.metrics | - Metrics |
sklearn.mixture | - Gaussian Mixture Models |
sklearn.model_selection | - Model Selection |
sklearn.multiclass | - Multiclass classification |
sklearn.multioutput | - Multioutput regression and classification |
sklearn.naive_bayes | - Naive Bayes |
sklearn.neighbors | - Nearest Neighbors |
sklearn.neural_network | - Neural network models |
sklearn.pipeline | - Pipeline |
sklearn.preprocessing | - Preprocessing and Normalization |
sklearn.random_projection | - Random projection |
sklearn.semi_supervised | - Semi-Supervised Learning |
sklearn.svm | - Support Vector Machines |
sklearn.tree |
- Decision Trees |
sklearn.utils |
- Utilities Recently deprecated |
Classification (분류)
- Identifying which category an object belongs to.
- Spam detection, image recognition, etc
- SVM, Nearest Neighbors, Random Forest, etc
Regression (회귀)
- Predicting a continuous-valued-attribute associated with an object.
- Drug response, Stock prices predicion, etc
- SVR, Nearest Neighbors, Random Forest, etc
Clustering (클러스터링, 군집화)
- Automatic grouping of similar objects into sets.
- Customer Segmentation, Grouping Experiment Outcomes, etc
- K-Means, Spectral Clustering, Mean-Shift, etc
Dimensionality Reduction (차원 축소)
- Reducing the number of random variables to consider.
- Visualization, Increased Efficiency, etc
- PCA, Feature Selection, Non-Negative Matrix Factorization, etc
Model Selection (모델 선택)
- Comparing, validating and choosing parameters and models.
- Improved accuracy via parameter tuning, etc
- Grid Search, Cross Validation, Metrics, etc
Preprocessing (전처리)
- Feature extraction and normalization.
- Transforming input data such as text for use with machine learning algorithms, etc
- Preprocessing, Feature Extraction, etc
Reference: scikit-learn.org (URL)